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Abstract

An inflow/outflow boundary treatment procedure is described for the numerical computation of non-periodic flows

which allows for the use of periodic spatial boundary conditions. Due to this periodicity, e.g. efficient and accurate Fou-

rier spectral methods can be applied. The governing equations of the flow are modified using window functions as

known from signal processing. Thereby, the windowed solution is forced to zero to high order at the artificial bound-

aries. The physical solution near the boundaries is obtained by a regularised dewindowing operation and boundary con-

ditions are imposed with the help of a suitable base flow which needs to be defined only within the window-boundary

regions. On the inner domain, the unmodified flow equations are solved. The base flow can contain spatially and

temporally varying disturbances. Hence it is possible to employ transitional and turbulent inflow conditions using

the windowing technique.

By properly designing the window function, spectral accuracy of a Fourier discretisation can be obtained. The per-

formance of this scheme is analysed theoretically, verified numerically and compared to the more widely used fringe

region technique. It is found that the accuracy of imposing the boundary conditions is similar for both techniques. Fur-

thermore, for flow problems with a spatially evolving base flow, the windowing method does not require the base flow

to be periodic.

In this paper, the implementation of the windowing method in a two-dimensional incompressible Navier–Stokes

code is examined and compared in detail to the fringe region technique for two test cases: The convection of a localised

disturbance and a stationary, spatially evolving jet.
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1. Introduction

For the numerical modelling of a flow problem in an Eulerian description the computational domain is

usually a truncation of the real (physical) domain. At the computational domain boundaries the solution is

often (partially) unknown, resulting in the need of artificial boundary conditions (see the reviews by Givoli
[12] and Colonius [9]). The prescription of suitable conditions at an artificial boundary requires that some

properties of the solution are known a priori. Since in most cases these properties are known only approx-

imately or can only be guessed, differences between the approximate conditions and the proper physical

solution are present near the boundaries. These regions, which are characterised by the changeover from

the physical solution to the solution imposed by the (approximate) boundary condition, are commonly con-

sidered as ‘‘non-physical’’. At the artificial boundaries also the spatial discretisation has to be constructed

such that the resulting numerical scheme is stable and reflections from the boundaries are suppressed.

For finite-difference schemes one usually needs to employ special boundary closures. This is avoided if
periodic boundary conditions can be imposed at the artificial boundaries. Then the schemes used in the

exterior of the domain can be extended across the artificial boundary and the solution algorithms usually

gain robustness and efficiency. Since for the above reasons non-physical regions near artificial boundaries

are practically unavoidable, one can exploit this fact by modifying the governing equations in such a way

that near the artificial boundaries periodic boundary conditions can be assumed for the discretised spatial-

derivative operators of the underlying flow equations without significantly increasing the size of the

computational domain. The procedure has to ensure that away from the artificial boundaries the correct

physical solution is recovered.
Reducing the effect of artificial boundary conditions by use of a forcing term was first applied by Israeli

and Orszag [17]. They used a sponge layer to damp oscillations in the solution near the boundaries before

being treated by the artificial boundary conditions. In the perfectly matched layer (PML) approach [1], it is

ensured that the damping layer is non-reflecting by changing the phase speed of the incoming waves such

that they are damped. The PML approach has been extended to the treatment of non-uniform Euler flows

(see e.g. [15]).

The idea of obtaining non-periodic solutions on periodic domains is due to Spalart [27], who modified

the Navier–Stokes equations in ‘‘fringe regions’’ at the computational domain boundaries such that the
solution was forced towards periodicity in these regions without affecting the physically meaningful solu-

tion in the valuable part of the domain. Spalart demonstrated that accurate results using the fringe method

could be obtained. Some justification of the method was also given. The fringe method has found wide-

spread use and was employed successfully in a number of publications involving transitional and turbulent

flows, see e.g. [2,19], and the references therein. The fringe method was further analysed in more detail by

Nordström et al. [20]. These authors gave a justification of the method and showed quantitatively that for

incompressible flow the inflow/outflow problem on the example of the spatially evolving Blasius profile can

be simulated with high accuracy.
Here, we adopt a different approach, which was proposed for the simulation of transitional compressible

boundary layer flow by Guo et al. [14]. The underlying idea is related to that of the spectral multidomain

technique of Israeli et al. [18] and is based on a windowing operation used for the spectral analysis of non-

periodic data in signal processing (e.g. [21]). Colonius and Ran [10] used a related approach to simulate

flows on unbounded domains by employing a super-grid scale model to stretch the grid near the domain

boundaries. In the present work, the method of Guo et al. [14] is revisited and modified with respect to

the treatment of the solution near the boundaries. It is then applied to incompressible flows and an

extended analysis of its properties is performed.
The paper is organised as follows. Section 2 introduces the fundamentals of both the fringe and the win-

dowing method and their application to flow problems. Section 3 describes a model problem to demon-

strate the convergence properties of the windowing technique. In Sections 4 and 5, two numerical test
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cases involving the Euler and Navier–Stokes equations are presented. Test case 1 examines the ability of

both methods to damp out a single localised disturbance as it travels out of the physical domain. Test case

2 considers a spatially evolving jet and assesses the performance of the fringe and the windowing method in

simulating a spatially evolving flow.
2. Mathematical formulation

2.1. Problem description and governing equations

We consider incompressible fluid flow on a rectangular two-dimensional physical domain CI with bound-

ary oCI. A Cartesian coordinate system is defined such that the streamwise (x1 or x) and spanwise/cross-

stream (x2 or y) axes are aligned with the straight domain boundaries. The non-dimensional velocity vector
with components u1 = u and u2 = v is denoted by u. The non-dimensional density q and the non-dimen-

sional dynamic viscosity l are assumed to be constant. Non-dimensionalisation is such that the Reynolds

number is given by Re = q/l. The flow is then governed by the incompressible Navier–Stokes equations
otui þ ujojui þ
1

q
oip ¼ 1

q
ojlðoiuj þ ojuiÞ; ð1Þ
and the continuity equation
okuk ¼ 0: ð2Þ

Here oi and ot denote the partial derivatives with respect to xi and time t, respectively. Unless stated other-

wise, the summation convention over repeated indices applies.

Parts of the boundary oCI of the physical domain CI can coincide with physical boundaries (e.g. walls),

the remainder coincides with artificial boundaries (in particular inflow/outflow boundaries). For notational
simplicity we assume that the entire boundary oCI is artificial. In an application where this is not the case

(e.g. at solid walls) the boundary oCI has to be split accordingly and the following applies to the artificial

parts of oCI. Note that for well-posedness of the original problem formulation boundary conditions on the

entire boundary oCI are necessary.

For the following considerations, periodic boundary conditions are assumed in the spanwise/cross-

stream direction. In the streamwise direction x the flow is assumed to be spatially evolving. Therefore,

the inflow/outflow boundary treatment is imposed in the streamwise direction only. The subsequently de-

scribed boundary treatment transfers directly to problems in three spatial dimensions and to periodic
boundary treatment in more than one direction, but for simplicity we consider here only the two-dimen-

sional case with one inhomogeneous direction.

For the boundary treatment, the physical domain CI is enlarged in the streamwise direction forming the

computational domain C (Fig. 1). On CI we would like to recover an accurate physical solution to the

original flow problem according to Eq. (1). The added subdomain CA = CnCI, on the other hand, is respon-

sible for the boundary treatment and is usually called fringe region. Here, we denote this region – to avoid

confusion with the fringe region technique introduced in Section 2.2 – more generally artificial boundary

region. The computational solution within CA is not part of the physically relevant solution to the original
flow problem. The boundary treatment thus modifies the underlying initial-boundary value problem

(IBVP) on CI to an IBVP with periodic boundary conditions in the x-direction on the enlarged domain C.
For a unique solution of the periodic problem both the fringe and the windowing approach require dis-

tributed boundary data to be provided within the artificial boundary region CA. The boundary conditions

to the computational problem are thus assumed to be given on the subdomain CA in the form of distributed

boundary conditions Ui,
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Fig. 1. Sketch of the computational domain C consisting of the physical domain CI and the artificial boundary region CA with

C = CI [ CA. The mean flow velocity is assumed to be from left to right. Periodic boundary conditions are applied in all directions.
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uiðx; tÞ ! Uiðx; tÞ for x ! oCA: ð3Þ

The function Ui needs to be defined on CA only and is usually referred to as (computational) base flow of

the problem. Ui is allowed to vary both in space and time.

2.2. Fringe region technique

The following description of the fringe region technique is based on Lundbladh et al. [19]. The same

form has been analysed in [20] and has been successfully applied in a number of cases, e.g. [4].
In order to be able to assume periodicity within the computational domain, the fringe region CA is ap-

pended downstream of the physical domain CI (see Fig. 1). Within the fringe region, the flow is forced back

to the desired inflow condition and possible disturbances are damped by adding a suitable volume force Gi

to the right-hand side of the Navier–Stokes equation (1) which vanishes within CI.

The general form of the fringe forcing is given by
Gi ¼ kðxÞðUi � uiÞ: ð4Þ

The fringe function k(x) P 0 is non-vanishing only within the fringe region CA, defined to extend from xstart
to xend. Ui is a prescribed flow field, periodic in x, referred to as (computational) base flow, containing the

inflow and outflow conditions (see Fig. 2).

If the physical base flow evolves in the streamwise direction x, the streamwise velocity component Ux of

the computational base flow is a blending between inflow and outflow velocity and can be written as [19]
Uxðx; yÞ ¼ Uðx; yÞ þ Uðx� LP ; yÞ � Uðx; yÞ½ �S x� xmix

Dmix

� �
: ð5Þ
Here U(x,y) describes a solution to the Navier–Stokes (or boundary layer) equations in the absence of the

periodic boundary treatment, e.g. the Blasius solution in the case of boundary layer flow. LP = xend � xin
denotes the length of the periodic computational domain and the smooth step function S(x) is given in

Eq. (7). xmix and Dmix define the properties of the blending and are explained in the following. Note that

the blending (5) is only needed for a physical base flow U that is evolving in space, e.g. the simulation

of spatially evolving boundary layers. For a base flow that is not dependent on x, U ¼ U holds.
In two-dimensional flows, the other non-vanishing velocity component Uy of the base flow can be cal-

culated using the continuity equation, especially in the blending region where the base flow is non-physi-

cally modified and Uy cannot be recovered otherwise. A natural choice for the parameters of the

blending region for the coordinates introduced above is xmix = xstart and Dmix = xend � xstart. This choice

ensures that the blending uses the maximum streamwise extent of the fringe region which is preferred

for laminar or nearly laminar flows [19]. Hereby it is assured that the effects on the valuable part of the

flow domain are minimised.
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Fig. 2. Sample fringe function k(x) used in test case 2 (Section 5.2) with parameters kmax = 30, xstart = 20, xend = 32. Drise = 60% and

Dfall = 10% of fringe extent.
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It is well possible to include temporally and/or spatially varying inflow disturbances into Ui. Even com-

pletely turbulent inflow conditions can be employed in the fringe region, e.g. [4]. Note that these superim-

posed disturbances should satisfy continuity in such a way that the entire base flow Ui is divergence-free

(see also Section 5.2.1).

The form of the fringe function k introduced in [19] is
kðxÞ ¼ kmax S
x� xstart
Drise

� �
� S

x� xend
Dfall

þ 1

� �� �
: ð6Þ
The maximum strength of the fringe function is kmax and its shape is defined by the function S(x) and the

parameters Drise and Dfall. S(x) is a smooth step function with S(x) = 0 for x < 0 and S(x) = 1 for x P 1. The

following form of S has continuous derivatives of all orders for x 6¼ 0 and x 6¼ 1
SðxÞ ¼
0; x 6 0;

1=½1þ expð 1
x�1

þ 1
xÞ�; 0 < x < 1;

1; x P 1:

8><
>: ð7Þ
Note that the superposition given in Eq. (5) is continuously differentiable only for x 6¼ xmix and

x 6¼ xmix + Dmix.

The application of the fringe method imposes an additional restriction on the maximum possible time
step of the integration scheme. Straightforward analysis of the linear temporal stability characteristics of

the damping term Gi yields the condition
kmaxDt 6 2:51 resp: kmaxDt 6 2:78 ð8Þ

for a third and a fourth order Runge–Kutta scheme, respectively.

2.3. Windowing approach

2.3.1. Theoretical consideration

The windowing method has its roots in signal processing, where the windowing operation allows the

spectral analysis of non-periodic signals [21,16]. Similarly, the windowing operation in the present context
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can be understood as an artificial window through which the physical flow field is projected onto a com-

putational domain.

As a window function on the domain x 2 [xL,xR] we define a function w(x) 2 C1 on R with the follow-

ing requirements (xL < xl < xr < xR)

� (R1) 0 6 w(x) 6 1 on the entire real axis R,

� (R2) max{1 � w(x)} 6 �2 on the inner domain [xl,xr],

� (R3) wðxÞ 6 �1e
�ajx�xL j for x < xl; wðxÞ 6 �1e

�ajx�xRj for x > xr with some a > 0, i.e. w(x) decays at least

exponentially for x ! ± 1. An implication of this requirement is max{w(xL),w(xR)} 6 �1.

Any bounded and continuous function f(x) defined on R has a Fourier transform if it is multiplied with

such a window function w(x). Accordingly, we define the windowing operation by
~f ðxÞ
�� �� :¼ wðxÞf ðxÞ: ð9Þ
The Fourier transform of ~f is then defined as
~̂f ðkÞ ¼
Z 1

�1
~f e�ikx dx; ð10Þ
and for ~f
ðpÞ

integrable and ~f 2 Cp�1 one can show by partial integration that
~̂f ðkÞ ¼ Oðjkj�pÞ: ð11Þ
For ~f 2 C1 the inverse transform of ~̂f converges to ~f spectrally.

The error introduced by performing the Fourier integral (10) only over a bounded domain [xL,xR]

according to
~̂fdðkÞ ¼
Z xR

xL

~f ðxÞe�ikx dx; ð12Þ
instead of (�1,+1) is estimated with (R3) as
�0d ¼ max ~̂f � ~̂fd
��� ��� 6 Z xL

�1
~f e�ikx dx

����
����þ

Z 1

xR

~f e�ikx dx

����
���� 6 2

M�1
a

ð13Þ
with M P max |f(x) |. Considering the band-limited inverse transform of Eq. (10)
~f N ¼ 1

2p

Z kN

�kN

~̂f ðkÞeikx dk; ð14Þ
where the cut-off wavenumber kN is the Nyquist wavenumber kN = p/h with the grid spacing h, the estimate

for the truncation error
�N ¼ max ~f N � ~f
�� �� 6 1

2p

Z �kN

�1
þ
Z 1

kN

� �
~̂f ðkÞeikx dk

����
���� 6 C kNj j1�p ð15Þ
with a constant C decays at least as OðjkN j1�pÞ. For band-limited ~f N , it can be shown using Whittaker

cardinal functions that the Fourier transform of ~f N is given as [3]
~̂f N ðkÞ ¼ h
X1
j¼�1

~f ðxjÞe�ikxj with xj ¼ j � h; h ¼ p
kN

: ð16Þ
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By a similar procedure as for the relation (13), the window truncation is imposed on ~̂f N by terminating the

summation in Eq. (16) at some integer lower and upper bounds jL and jR, respectively, where

xL 6 xjL < xL þ h and xR � h < xjR 6 xR. For the resulting ~̂f Nd
one arrives at the estimate
�00d ¼ max ~̂f N � ~̂f Nd

��� ��� 6 h
XjL
j¼�1

~f ðxjÞe�ikxj

�����
�����þ h

X1
j¼jR

~f ðxjÞe�ikxj

�����
����� 6 2�1hM 1þ e�ah

� �
; ð17Þ
which is larger than �0d of Eq. (13) only for (ah) J 0.6590, i.e. for coarse grids. The error j~f Nd
� ~f N j can be

estimated by taking the inverse Fourier transform of ð~̂f N � ~̂f Nd
Þ and using Eq. (17) as
�d ¼ max ~f Nd
� ~f N

�� �� 6 2�1M 1þ e�ah
� �

6 4�1M ð18Þ
and is usually referred to as window truncation error. The overall error �w is then composed of both the trun-

cation error and the window truncation error as
�w ¼ max ~f Nd
� ~f

�� �� 6 �d þ �N : ð19Þ
For f(x) 2 C1 in particular this means that the error �w decays exponentially until the window truncation

error �d is reached. �d can be made as small as the machine precision by adjusting the value of �1 accordingly
(see Eq. (13)).

For functions which are defined on a discrete grid, analogous derivations and estimates hold. In this case

the Fourier transforms are replaced by discrete transforms and the integrals are replaced by summations

using the trapezoidal rule.

The inverse windowing process is singular or at least ill-posed on the domain boundaries x = xL and

x = xR since there w � 0. Retrieving the quantity f from the windowed value ~f is ill-conditioned for any

x 2 [xL,xl] and x 2 [xr,xR] for which w is small. Therefore, a regularised de-windowing operation is intro-

duced as
f ¼ ð1� wÞFþ ~f : ð20Þ
HereF is a function defined at least on x 2 [xL,xl] and x 2 [xr,xR] describing the distributed boundary data
required for the solution of the periodic IBVP. In the context of a flow simulation, F is the base flow. The

maximum regularisation error jf � f j on x 2 [xl,xr] is bounded by ð�2 �max jF� f jÞ, whereas on

x 2 [xL,xl] and x 2 [xr,xR] it is bounded by max jF� f j.
Different types of window functions can be designed. Since no window function used in signal processing

(see [16]) directly suits the needs for the present application, different approaches were studied in [13]. A

window function satisfying the requirements (R1)–(R3) is
wðxÞ ¼ 10�an 2ðx�xLÞ=ðxR�xLÞ�1j jn ; ð21Þ

which assumes that the window function describes a symmetric window (xl + xr = xL + xR). We refer to the

window function (21) as an exponential window since it satisfies requirement (R3) and thus preserves spec-

tral convergence of the Fourier series of a sufficiently smooth windowed function according to the above

derivation. The parameters a and n can be calculated from the conditions that for some xL < xl < xr < xR
wðxLÞ ¼ wðxRÞ 6 �1 and wðxlÞ ¼ wðxrÞ P 1� �2 ð22Þ

with small numbers �1 and �2, e.g. comparable to the machine precision. Analytical relations for the deriv-

atives oxw and oxxw can be derived easily. If desired, an extension to non-symmetric windows is straight-

forward by connecting two windows according to Eq. (21) with different parameters a and n in the middle

of the domain x ¼ 1
2
ðxL þ xRÞ.

An example of an exponential window function is shown in Fig. 3 together with the spectrum of the

windowed non-periodic function introduced in [14] (scaled according to x 0 = (x � xL)/(xR � xL))
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f ðx0Þ ¼ tanhð4x0Þ þ e�4x0
X4

k¼0

sinð2p2kx0Þ; 0 6 x0 6 1: ð23Þ
It is evident from Fig. 3(b) that this particular choice of the window function w(x) preserves the spectral

convergence of the Fourier representation of f(x)w(x).

The efficiency of a window function can be estimated by the following consideration: The spectral band-

width kw of a window function w(x) is defined by
ŵðkÞj j < d for jkj P kw ð24Þ
with ŵðkÞ denoting the Fourier coefficients according to Eq. (10) and d a fixed small error level. A harmonic

function g(x) with unit amplitude is given as (assuming xL = 0)
gðxÞ ¼ sin
2p
xR

kgx
� �

: ð25Þ
The windowed function ~gðxÞ is then, due to the convolution properties of the windowing process in Fourier

space, resolved up to the error d if at least
N P 2ðkw þ kgÞ ð26Þ

grid points are used in the discretisation of w(x) and g(x). For an exponential window the spectral band-

width kw is proportional to the physical extent of the domain divided by the extent of the windowing

regions
kw / xR � xL
ðxl � xLÞ þ ðxR � xrÞ

: ð27Þ
Therefore, kw is determined by the choice of the computational domain C alone. Eq. (26) now shows that

the overhead cost of the windowing process, i.e. the fraction kw/N, will decrease with increasing resolution
of the discretisation, i.e. with increasing kg. The efficiency of the windowing methods lies thus in large N;

moreover, the efficiency of a fast Fourier transformation (FFT) possibly used in the numerical algorithm

also increases with N.



P. Schlatter et al. / Journal of Computational Physics 206 (2005) 505–535 513
To apply the windowing procedure in the general case of D > 1 dimensions, the window function is ex-

tended tensorially by introducing functions Wi(xi) for each coordinate direction xi analogously to w(x) of

Eq. (9). The window function is then defined as
Fig. 4.

domai
W ðxÞ ¼
YD
i¼1

W iðxiÞ ð28Þ
and the windowing operation as
~f iðxÞ ¼ W ðxÞfiðxÞ; i ¼ 1; . . . ;D ð29Þ

for a D-component vector function fi(x).

2.3.2. Application to non-periodic flows

We again consider the flow in the domain C. Similarly to the fringe method, CI denotes the subdomain of

C in which we want to recover the physically relevant solution (see sketch Fig. 4). CI consists of the domain
CI

I , where a solution of the unmodified equation (1) is sought, and the domain CA
I , where physical correct

inflow data are prescribed (distributed inflow conditions). The (normally not exactly known) outflow is

treated in CA, which is not part of the physical solution to the problem (distributed outflow conditions).

The class of problems that can be treated with the windowing technique is summarised by the following

properties:

� (A1) There exists a base flow Ui which is at least defined on CA
I and CA. This base flow is used as distrib-

uted inflow and outflow condition and therefore contains the boundary data for the flow problem. Ui

can be constructed similar to Eq. (5) for the fringe method. It should satisfy continuity oiUi ¼ 0. For

parts of Section 4.2 it will further be assumed that Ui is periodic in the flow direction x.

� (A2) The solution on CI is subject to the distributed boundary data
ui ! Ui for x ! oCA: ð30Þ

On the inflow boundary of the physical domain CI the inflow condition ui ¼ Ui on the inflow portion of

oCI is fulfilled exactly.
� (A3) The solution ui is integrated according to the unmodified equation (1) only on CI

I . The known solu-

tion on CA
I is expected to provide accurate inflow data (solution to the Navier–Stokes equations). On CA

the outflow condition is imposed.
ΓI
IΓA

I ΓA

in
fl

ow

ou
tf

lo
w

ΓI

Γ

Sketch of the computational domain C, adapted for the windowing technique, consisting of the physical domain CI
I , the inflow

n CA
I and the outflow domain CA. C = CI [ CA with CI ¼ CI

I [ CA
I .
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In analogy with the fringe technique, the base flow Ui on CA
I can e.g. contain superimposed temporally

and spatially varying disturbances. Again, it is advisable that these disturbances satisfy continuity, see also

Section 5.2. It should be noted that, since the inflow window is located within the physical domain CI, there

should be no non-physical energy feed into the flow and the velocities should follow physical evolution

equations, e.g. in case of transition simulations results from linear stability theory.
The main difference of (A1)–(A3) to the properties of the fringe method is that CA

I is assumed to be part

of the physical domain CI. This slight modification, however, does not pose a serious restriction on both the

generality of problems that can be treated using the windowing method and the validity of the solution.

Flow problems that are to be treated with the windowing technique (and similarly with the fringe method)

can be distinguished into two categories:

� Damping of outflowing disturbances together with an undisturbed inflow within an otherwise periodic

base flow. In this case, perturbations of the base flow are usually introduced in the domain CI
I and

the downstream evolution is investigated (see test case 1 in Section 5.1), e.g. the flow around bodies or

the spatial evolution of turbulent spots in a channel flow. For these cases, the base flow is usually inde-

pendent of the streamwise variable x.

� A spatially evolving flow is examined. Here, the inflow on CA
I is a valid solution to the Navier–Stokes

equations. In this case the starting point of the physical domain is usually a matter of definition or its

precise location is not important, e.g. boundary layer simulations starting downstream of the leading

edge [4].

2.3.3. Windowed flow equations

In this section, the windowed evolution equation for the velocities ui and pressure p are derived from the

Navier–Stokes equations (1). Recall from Eq. (29) that the windowing operation is defined as
~uiðxÞ ¼ W ðxÞuiðxÞ; ð31Þ

and from Eq. (20) the definition of the de-windowing operation
ui ¼ ð1� W ÞUi þ ~ui: ð32Þ

As mentioned earlier, the maximum regularisation error on CI

I is bounded by ð�2 �max jUi � uijÞ,
whereas on CA and CA

I it is bounded by max jUi � uij, which is small by (A2). The distributed boundary

data of the solution are enforced by means of the dewindowing operation (32). From Eq. (31) it follows

that
ojui ¼
1

W
ðoj~ui � uiojW Þ ð33Þ
which is singular on oC. Note that in Eq. (33) derivative operations are taken only on windowed variables

and the window function. Therefore, it is possible to use schemes assuming periodic boundary conditions to

evaluate the derivatives, e.g. accurate global Fourier methods.

Similarly, we obtain for the gradient of the convective fluxes F c
ij ¼ uiuj
ojF c
ij ¼

1

W
oj~F

c
ij � F c

ijojW
� 	

¼ 1

W
ojguiuj � uiujojW
� �

: ð34Þ
The diffusive fluxes become
F d
ij ¼ lðoiuj þ ojuiÞ ¼

1

W
lðoi~uj þ oj~ui � ujoiW � uiojW Þ; ð35Þ
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and the respective windowed flux is
~F d
ij ¼ lðoi~uj þ oj~ui � ujoiW � uiojW Þ: ð36Þ
On taking the gradient of the diffusive flux one obtains by (33)
ojF d
ij ¼

1

W
oj~F

d
ij � F d

ijojW
� 	

: ð37Þ
Note that either form of F d
ij in Eq. (35) can be inserted in (37). Depending on the numerical scheme it might

be impractical to compute derivatives oi uj on the non-windowed quantities. On the other hand, it is usually

possible – depending on the window function W – to evaluate the term ojW/W despite the singularity of W

on oC since ojW/W is bounded; e.g. for the exponential window (21) an analytical expression can be given.

The second form in Eq. (35) is preferred in such cases.

On substitution of (34) and (37) into (1) and (2) one can derive the modified Navier–Stokes equations

governing the evolution of ~ui
ot~ui þ ojgujui þ 1

q
oi~p �

1

q
oj lðoi~uj þ oj~uiÞ

 �

¼ uiujojW þ p
q
oiW � 1

q
oj lðujoiW þ uiojW Þ

 �

� 1

q
ojW
W

lðoi~uj þ oj~ui � ujoiW � uiojW Þ; ð38Þ

ok~uk ¼ ukokW ; ð39Þ

together with the dewindowing operation (32), which enforces the distributed boundary conditions.

The linear stability properties of the temporally discretised equation (38) have been analysed in [13].

There, it is concluded that no additional time step restrictions are encountered.
Further refinements of the scheme just described are possible. Guo [13] proposes for his compressible

calculations the introduction of a sponge region close to the outflow and a buffer domain within the window-

ing region. However, for the present study, neither of these refinements were found necessary.

2.3.4. Formal comparison

It is instructive to compare the fringe and windowing techniques on a formal level by a simple analogy.

Consider the fringe method applied to an evolution equation otui + Fi(u) = 0 in the following form (see Sec-

tion 4.1)
otui þ F iðuÞ ¼ kðUi � uiÞ: ð40Þ
Using a fractional step approximation in the framework of an Euler-forward integration, the discrete time
step Dt is split into two substeps of length s and s 0
u0i � uðnÞi

s
¼ �F iðuÞ; ð41Þ

uðnþ1Þ
i � u0i

s0
¼ kðUi � u0iÞ: ð42Þ
The second equation can be rewritten as
uðnþ1Þ
i ¼ ð1� s0kÞu0i þ s0kUi: ð43Þ
The windowing approach enforces the boundary conditions via the dewindowing (32) at the end of each

substep. Formally written as
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uðnþ1Þ
i ¼ ð1� W ÞUi þ W u0i; ð44Þ
where u0i is calculated in a forward integration similar to (41). Comparing Eqs. (43) and (44) yields the result
W ¼ 1� s0k: ð45Þ

Without going into further details, Eq. (45) gives – except for the fractional step error – a formal framework

to compare the fringe and the windowing techniques.
3. Application to an ordinary differential equation

This section presents the application of the windowing technique to an ordinary differential equation.

General properties such as convergence and accuracy are discussed and compared to the theoretical results

of Section 2.3.

In the following, the one-dimensional Poisson equation, formulated as a simple boundary-value

problem,
u00ðxÞ ¼ f ðxÞ ð46Þ

is considered on the bounded domain x 2 [0,4]. The prime denotes derivation with respect to x. The right-

hand side is set to
f ðxÞ ¼ �15e�1�x cosð4xÞ þ 8e�1�x sinð4xÞ ð47Þ

and the boundary conditions are chosen as
uð0Þ ¼ 1

e
and uð4Þ ¼ 1

e5
cosð16Þ: ð48Þ
The analytical solution is non-periodic on [0,4] and given by (see Fig. 5)
uex ¼ e�1�x cosð4xÞ: ð49Þ

Using the windowing technique (9) and the relations for the derivatives (33) one finds for the windowed

solution ~u
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~uðxÞ ¼ wðxÞuðxÞ; ð50Þ
~f ðxÞ ¼ wðxÞf ðxÞ; ð51Þ

~u00 ¼ ~f þ uw00 þ 2u0w0 ð52Þ

¼ ~f þ uw00 þ 2
w0

w
~u0 � uw0ð Þ: ð53Þ
The regularised dewindowing operation (20) is given as
u ¼ ð1� wÞuex þ ~u; ð54Þ

which is considered as the numerical solution to Eq. (46) satisfying the boundary conditions (48), which are

enforced by the superposition of uex. To solve Eq. (52) it is necessary to evaluate the term 2u 0w 0 which in-

cludes a derivative of a non-windowed quantity. Unless u is periodic, the evaluation of u 0 in Fourier space

converges only linearly in the number of Fourier modes. Alternatively, Eq. (53), which is formally identical

to (52), can be used. There, only derivatives of windowed quantities and that of w(x) are needed. For the

numerical solution, the derivatives are calculated pseudospectrally with Fourier expansion.
Four possibilities to calculate the right-hand side have been evaluated. Firstly, the (usually unknown)

exact analytical derivative of uex is used to evaluate the right-hand side of (52). In the other three cases

the derivatives are computed numerically: The second implemented solution algorithm solves Eq. (53) in

which all the derivatives are taken from windowed quantities, thus directly allowing the use of Fourier

methods. This is the preferred variant due to its generality. The last two options artificially modify the exact

solution uex (boundary conditions) towards a periodic base solution ubase in order to evaluate 2u 0w 0 and

thus solve Eq. (52): Algorithm 3 uses a second window function to enforce periodicity (see Fig. 6). The

fourth version replaces the exact solution in the end regions of the domain (0,4) with a weighted superpo-
sition of the exact solution uex(x) and the solution at the opposite side of the domain uex(x � 4) (compare

the blending technique in Eq. (5)).

For all variants, the window function w(x) according to Eq. (21) has been chosen with �1 = �2 = � being
the machine precision (double precision, 2.2 · 10�16). The particular choice of the parameters of w(x) for

variants 3 and 4 ensures that the window function vanishes in the main part of the blending region (0,0.4)

and (3.6,4). The different window functions are shown in Fig. 6.
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The convergence rate of the calculated solution (52)–(54) toward the exact solution (49) with increasing

number of grid points is plotted in Fig. 7 for all variants of evaluating equations (52) and (53). The error is

computed on the entire domain C = [0,4] (length L = 4) and is defined as
Fig. 7.

(exact

varian
L2ðuÞ ¼
1

L

Z L

0

u� uexj j2 dx
� �1=2

: ð55Þ
As expected, taking the exact solution of the term 2u 0w 0 is the most accurate variant (although not feasible

in real applications) and thus leading to the best convergence rate. While increasing the number of grid

points N, especially the convergence rate of variant 3 (additional window to enforce periodicity) declines

significantly. The inclusion of large gradients in the base flow uex for this variant reduces the smoothness

of the solution such that spectral convergence cannot be sustained. The evaluation of variant 2 solving

Eq. (53) results in good spectral convergence, although starting at a higher error level for small N. The

reason for this behaviour is the numerical accuracy of the term 2w
0

wð~u
0 � uw0Þ. There, the difference of

two numbers of the same order is multiplied with the – possibly large but bounded – factor w0

w .
Fourier spectra of the solution are shown in Fig. 8. The windowed solution ~u of variant two shows the

same behaviour as seen in Fig. 3: The spectrum of the windowed solution decays exponentially. The spec-

trum of the (periodic) dewindowed solution u of case 3 indicates that the windowing as a means to construct

a periodic function preserves spectral accuracy of the solution, although with a slow spectral convergence

rate due to the steep gradients. On the other hand, the blending towards a periodic function with the

smooth step function S(x) (variant 4) does not result in a spectrally accurate solution u because the super-

position is not in C1 (see comments on Eq. (7)). Nevertheless, as implied by Fig. 7, this does not result in a

significant decrease of the spectral convergence coefficient (slope of curves in Fig. 7) of the dewindowed
solution for large N.

The example of this section leads to the conclusion that it is possible to use the windowing technique to

solve differential equations in Fourier space with given non-periodic distributed boundary conditions. If the

window function is chosen according to the properties (R1)–(R3) (Section 2.3), the windowing technique

preserves spectral convergence of the computed and the dewindowed solution u towards the exact solution

uex.
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Furthermore, different ways to evaluate derivatives of the base solution have been considered. It has

been shown that the transformation of the differential equation into a form in which derivatives are applied

only to windowed and thus periodic quantities is possible. Moreover, the size of the artificial boundary do-

main is kept low. On the other hand, the construction of a periodic base solution U by using a blending
similar to that of the fringe technique (5) also proved to be successful. Using a second window to construct

a periodic base solution should be avoided since the convergence rate is lower due to the larger spectral

bandwidth of the solution caused by the steep window function.
4. Implementation for 2D Navier–Stokes equations

The numerical discretisation scheme employed for the following two test cases solves the incompressible
Navier–Stokes equations in two dimensions with a simple and straightforward algorithm. The spatial dis-

cretisation uses Fourier decomposition in both directions. Aliasing errors arising from the pseudospectral

computation of the nonlinear terms are treated by the 3/2-rule [7]. For time advancement, an explicit third-

order Runge–Kutta scheme with adaptive time stepping is employed [26]. The divergence-free condition (2)

is enforced by a Helmholtz projection [8]. An 8th order exponential filter as in [11] was used in the Poisson

step of the solution algorithm to achieve the stability of the fractional-step method while maintaining suf-

ficient accuracy. The code was validated separately.

For an explicit Runge–Kutta time discretisation, it is sufficient to explain the numerical details of an
Euler-forward time step. The updated velocity of a sub-step will be denoted by u(n + 1). At time t(n) = ns
the solution u(n) on C is assumed to satisfy $ Æ u(n) = 0.
4.1. Fringe method

For the fringe method, the forcing term Gi (see Eq. (4)) is evaluated and included into the Navier–Stokes

equations according to (1). We proceed as follows:

� (F1) Using Eq. (1) and the abbreviation Fi including the nonlinear and viscous terms and the forcing

term Gi
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otui þ
1

q
oip ¼ F iðuðnÞÞ ð56Þ

we obtain for the first step of the algorithm

u�i ¼ uðnÞi þ asF iðuðnÞÞ: ð57Þ
The step size of the Runge–Kutta step is given by as where s is the full time-step.

� (F2) The divergence-free condition on the intermediate solution u* is enforced by a Helmholtz projection
uðnþ1Þ
i ¼ u��i ¼ u�i � oi/; ð58Þ

where / is a scalar function and is determined from

oku�k ¼ okok/: ð59Þ
The pressure can in principle be recovered directly from the fractional step algorithm, although the accu-

racy of the pressure solution is limited to first order in time [6,22].
4.2. Windowing technique

For the windowing technique, Eqs. (38) and (39) have to be solved. Basically, the same algorithm as for

the fringe technique is used, although some modifications are appropriate. Instead of using the windowed

quantity ~u as dependent variable, the regularised dewindowed quantities ui (see Eq. (32)) have been used in

the code to minimise the code changes.

Similarly to Section 4.1, for each Runge–Kutta substep we proceed as follows:

� (W1) Using Eq. (38) we introduce ~F i according to
ot~ui þ
W
q
oip ¼ ~F iðuðnÞÞ: ð60Þ

The forward projection is given for the windowed solution ~u as

~u�i ¼ ~uðnÞi þ as~F iðuðnÞÞ ð61Þ

or using the regularised dewindowed variables due to linearity

u�i ¼ uðnÞi þ as~F iðuðnÞÞ ð62Þ
for a stationary base flow. Alternatively, for non-stationary base flows Ui ¼ UiðtÞ, the time derivative of

ui (see Eq. (32)) has to be included, replacing Eq. (62) by

u�i ¼ uðnÞi þ as ~F iðuðnÞÞ þ ð1� W ÞotUi

� �
: ð63Þ

Note that ð1� W ÞotUi can alternatively be added in step (W3) since Ui is divergence-free by assumption.

The test cases have shown (see Sections 5.1 and 5.2) that an additional dewindowing operation at this

point increases the accuracy of the results slightly
u�þi ¼ ð1� W ÞUi þ W u�i : ð64Þ
The reason for this is that the additional dewindowing enforces the boundary data on the intermediate

solution u�þi and damps possible artefacts of ~F i in the windowing regions. A similar observation is also

made in [10]. These authors found an additional filtering step in the fringe region to be beneficial.
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� (W2) The divergence-free condition on the intermediate solution u� is enforced by a Helmholtz

projection
u��i ¼ u�i � oi/: ð65Þ
Using (32) and the continuity equation one requires

oku��k ¼ ok~u
��
k �UkokW ¼ 0; ð66Þ

and applying the divergence operator to (65) using (66) we obtain

oku�k ¼ okok/: ð67Þ
� (W3) The final dewindowing is then performed as
uðnþ1Þ
i ¼ u���i ¼ ð1� W ÞUi þ W u��i : ð68Þ

The divergence error of the solution due to dewindowing at time t(n + 1) is

oiu
ðnþ1Þ
i ¼ ðu��i �UiÞoiW : ð69Þ

It is non-vanishing only in the windowing regions where, however, ðu��i �UiÞ is small due to (A2).

The Poisson equation (67) can be solved accurately by a Fourier transform only if u� is periodic on C. A
non-periodic u� can be treated directly using a non-periodic Poisson solver of high order (e.g. [5]). Alterna-

tively, u�k in Eq. (67) can be split into a periodic part and a non-periodic part. Formally assuming the addi-

tional dewindowing in (W1) given in Eq. (64), u�k can be written as
u�k ¼ð1� W ÞUk þ ~u�k ; ð70Þ
¼ Uk|{z}
non-periodic

�WUk þ ~u�k|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
periodic

: ð71Þ
Since the base flow Uk satisfies continuity, okUk ¼ 0, Eq. (67) simplifies to
oku�k ¼ ok Uk � WUk þ ~u�k
� �

¼ ok �WUk þ ~u�k
� �

¼ okok/p; ð72Þ
which is a periodic problem on C and can thus be solved in Fourier space with periodic boundary condi-

tions. The new solution is then given as
u��i ¼ u�i � oi/p ð73Þ
with /p denoting the periodic part of /.
The pressure is obtained from
Dp ¼ �qr � ðu � ruÞ ð74Þ
with suitable boundary conditions (see e.g. [24]). If the pressure is not required on the entire domain, e.g., a

windowing operation can be employed to restrict the solution to the physically meaningful part of the

domain and to allow for an efficient (spectral) solution.
5. Application to 2D flows

Two numerical test cases involving the Navier–Stokes equations are considered hereafter. The first of

these test cases is employed as a comparison of the fringe and windowing technique in terms of the damping

characteristics of a single localised disturbance at the outflow boundary. The second test case examines the

ability of both methods to return a spatially evolved flow back to the prescribed inflow condition. The
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combination of these two test cases can be viewed as a model for real applications of this type of artificial

boundaries; e.g. in spatial boundary layer transition simulations the turbulent fluctuations at the outflow

need to be damped and the laminar inflow boundary layer profile has to be reestablished accurately.

5.1. Single vortex

The first test case to be considered consists of a single vortex which is convected through the two-dimen-

sional flow domain with unit velocity in the x1 direction (plug flow). The computational domain C is

[0,4p] · [0,2p] and the Reynolds number is set to infinity (inviscid flow). The vorticity distribution of the

vortex is based on [23] and given as
xðrÞ ¼ C

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�ðr=RÞ2

p r2

R2
� 2

� �
; ð75Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where r ¼ ðx1 � pÞ2 þ ðx2 � pÞ2. The initial location is at x1 = x2 = p and the parameters are set to C = 1

and R = 1/2 (see Fig. 9). The total circulation in the domain vanishes. The velocity field induced by the vor-

tex is superimposed onto the uniform convection velocity u1 = 1, u2 = 0. The exact solution of the given

problem is the downstream convection of the vortex without deformation. Since the velocity induced by

the vortex decays rapidly with increasing radial distance, the exact solution far from the vortex core is

the constant convection velocity u1 = 1.

In the x2 direction, periodic boundary conditions are imposed. For the inhomogeneous direction x1, the
boundary treatment with both the fringe and the windowing technique has been used to damp out the vor-

tex as it leaves the physical domain and to prevent the vortex from reentering. An exponential window

function similar to (21) has been used. The base flow is thus Ux ¼ 1 and Uy ¼ 0. An ideal boundary treat-

ment would completely cancel out the vortex at the outflow without disturbing the inflow condition or

reflecting back into CI.

The domain is discretised by 128 · 64 grid points in the x1 and x2 directions, respectively. Corresponding

simulations with higher resolution confirmed that the results are grid-independent. In order to quantify the

global accuracy and especially the damping behaviour of the two artificial boundary techniques, the L2

error in the physical subdomain CI ¼ ½0; 2
3
4p� � ½0; 2p� is calculated,
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Fig. 9. Vorticity distribution of the single vortex defined in Eq. (75).
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L2ðuÞ ¼
1

lxly

Z lx

0

Z ly

0

u� uexj j2 dx dy
� �1=2

ð76Þ
with u and uex denoting the computed and the exact solution, respectively. The dimensions of the integra-

tion area are lx = 8p/3 and ly = 2p. Similarly, the x-dependent error is defined as
L2;xðu; xÞ ¼
1

ly

Z ly

0

u� uexj j2 dy
� �1=2

: ð77Þ
A number of different fringe and windowing parameters were examined in the simulations A to K, see

Table 1.

The temporal evolution of the L2 error for a variation of the fringe strength (simulations A to D) is

shown in Fig. 10. The initially low deviation between the computed and the exact solution increases as

the vortex travels downstream through the domain CI due to small discretisation errors. As soon as the

vortex reaches the outflow of the physical domain (x ¼ 8
3
p � 8:4, t � 5) the fringe forcing starts to damp

the vortex towards zero. The following peak of the L2 error (t � 8) expresses the upstream influence of this
1

nt fringe and windowing parameters for test case 1 (single vortex)

kmax xstart (i) Window xl (i) xr (i)

25 7.9 (80) J 3.9 (40) 8.6 (88)

50 7.9 (80) K, K+ 4.9 (50) 7.7 (78)

75 7.9 (80)

100 7.9 (80)

50 8.8 (90)

50 9.8 (100)

50 10.8 (110) Fringe % rise % fall

50 7.9 (80) 3 3

34 7.9 (80) 3 3

parameters according to Eq. (6) with xend = 12.6 (128); windowing see Eq. (21) with xL = 0 (1) and xR = 12.6 (128).

inates given in physical units and grid points (in parentheses).
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Fig. 10. L2 error for test cases A to D: variation of the fringe amplitude kmax.
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forcing. The stepwise decay of the L2 error at intervals of Dt � (8/3)p then shows the subsequent damping

of the artefacts of the vortex that were able to penetrate through the fringe region and reenter the physical

domain.

As can be seen from Fig. 10, the fringe strength does not play an important role in terms of the upstream

influence of the fringe region, i.e. the error peak is similar for all four cases. On the other hand, the long-
term damping behaviour is quite different. Case B is more strongly damped than case A as expected. An

important feature is shown for cases C and D: Although the fringe amplitude is only increased moderately,

the fringe forcing does not provide a weakening of the vortical disturbance at all; strong velocity fluctua-

tions are generated within the fringe region. This behaviour could be prevented by a reduction of the time

step according to the criteria presented in Eq. (8), but in the present implementation the time step is calcu-

lated based on the unmodified equation (1) alone. The inverse proportionality of the time step and the

fringe strength kmax is unlikely to allow an efficient solution procedure for high fringe amplitudes.

The influence of the starting point of the fringe region for a fixed fringe amplitude kmax is shown in Fig.
11 corresponding to simulations B and E to G. The results confirm the observations made in Fig. 10: The

earlier the fringe forcing starts, the more distinctively the initial error peak indicates a strong upstream

influence. On the other hand, beginning the fringe forcing further downstream reduces this influence since

it is more and more confined to the fringe region and does not appear in the L2 error. However, a shorter

fringe region results in a weaker damping of the error and the intervals between subsequent reductions of

the error increase corresponding to xstart.

As already reported in [20], the shape of the fringe function is not very important for the overall damping

behaviour. Fig. 12 shows simulations H and I in which the fringe function is basically rectangular.
Due to the higher total strength of the fringe (area below the fringe function) in simulation H, both the

maximum error and the damping is increased. Simulation I reduced kmax to match the fringe strength to the

one of simulation B, but the initial error peak remains slightly stronger than in case B.

The results of the windowing technique are shown in Figs. 13 and 14. The inflow windowing region CA
I is

part of the physical domain CI in order to be able to prescribe an exact inflow condition. The outflow win-

dowing region is located at the right-hand end of the computational domain mainly within CA and is there-

fore not part of the physically relevant solution (refer to Fig. 4). The shape of the window function (see Fig.

3 and Eq. (21)) justifies this procedure as the window function reaches values close to unity within a fraction
of the total length xl � xL or xR � xr.
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Fig. 11. L2 error for test cases B, E to G: variation of the fringe region start xstart.
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Fig. 13 shows the comparison of the two different simulations K and K+ using the same window func-

tion. Run K does include the intermediate dewindowing step (W1), whereas run K+ does not. Obviously,

the accuracy of the results can be increased slightly by this step. Therefore, all subsequent windowing sim-

ulations do use this additional dewindowing step (see Section 4.2).

The results of the simulations for the windowing technique with different extents of the window function
are shown in Fig. 14 for two symmetric windows. For t > 5, both cases show similar behaviour as for the

fringe cases F and G, first a decrease of the error, indicating that the vortex has left the physical domain but

has not yet been absorbed in the window. But as soon as the vortex is being damped, the L2 error increases.

The subsequent damping of the windowing scheme is mainly dependent on the length of the windowing

region, i.e. the gradient of the window function; the decay of the error for case K is thus slightly faster than

for case J.

How the error evolves during the passage of the vortex through the right-hand boundary is illustrated in

Fig. 15 for both methods. In principle, both plots show a similar evolution. The vortex is convected through
the physical domain as indicated by a slightly increased error due to the numerical truncation. The absorp-

tion zone is reached at t � 6 (fringe) and t � 8 (windowing). The passage causes an immediate upstream

spike of the error, which is similar in shape and strength for both techniques. Synchronously with the begin-

ning of the forcing, a second region of increased error is generated at the left (inflow) boundary which is

subsequently convected downstream with the uniform convection speed Ux ¼ 1. The main difference be-

tween the two methods demonstrated by this plot is the inherent feature of the windowing technique to pro-

vide the correct (prescribed) solution at the inlet as well as at the outlet of the computational domain.

Moreover, it becomes evident that the main forcing of the window technique is confined to a region closer
to the outflow boundary. Therefore, the influence of the forcing onto the physical domain CI is smaller.

A closer comparison of the most successful parameter sets for the fringe and windowing approach is gi-

ven in Fig. 16. Both schemes are comparable with respect to the long-term damping of the vortex, although

the maximum damping is reached by the fringe method. On the other hand, the immediate upstream influ-

ence caused by the vortex entering the damping zone is higher for the fringe method.

To conclude: Both techniques allow a comparable damping of a single localised disturbance. Although

the fringe method can reach a higher damping rate with optimally chosen parameters, its upstream influ-

ence is higher than it is for the windowing approach. Moreover, imprudent choice of fringe parameters can
lead to an unstable scheme unless further restrictions on the time step are made. In this respect, the win-

dowing technique is more robust.
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5.2. Planar jet

The second test case consists of a laminar planar jet with no superimposed disturbances. Periodic bound-

ary conditions are imposed in the cross-stream direction. The flow configuration is stationary and spatially

evolving in the streamwise direction, providing a test case for the ability of both the fringe and windowing

technique to return a spatially evolved flow back to its prescribed inflow state. The inflow and outflow con-

ditions are based on the analytical solution presented in [25] for a planar jet flow leaving an infinitesimally

small orifice. Starting from this analytical solution, a reference simulation was run on a domain
[0,64] · [0,8] with 256 · 32 grid points, in which the streamwise direction was made periodic using the fringe

technique. The base flow used in this test case was then extracted from the reference simulation. Fig. 17

shows the streamwise and cross-stream velocity contours of the base flow.

In contrast to test case 1 presented in the previous section, this base flow is non-periodic in the stream-

wise direction. Therefore, an adapted periodic base flow has to be constructed for the fringe technique and
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Fig. 17. Contour lines of the planar jet used as base flow for test case 2. Left: Streamwise velocity u, 15 contour levels between �0.3

and 1.3 Right: Cross-stream velocity v, 15 contour levels between �0.03 and 0.03, high velocity corresponds to dark colour.
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the periodic windowing technique (case 4 in Section 3). A blending region of the form (5) is added to the

streamwise velocity component of the base flow. The cross-stream component in the blending region is cal-

culated using continuity.

The dimension of the flow domain is [0,32] · [0,8] and, similarly to test case 1, the L2 error is computed

on the subdomain [0,20] · [0,8] of the computational domain. The spatial directions are discretised using
128 · 32 grid points. The Reynolds number is set to 30 which results in an appreciably broad downstream

jet spreading.

Several simulations have been conducted as listed in Table 2. Simulations A to Q have been performed

using a periodic base flow as just described. For simulations G to I and O to Q (windowing technique), the

blending region was positioned completely in CA where W(x) was significantly larger than zero. In a first

group of simulations (cases A to I), all velocity components were blended using Eq. (5) without correction

of the violated continuity equation. Conversely, in simulations J to Q the cross-stream velocity component

v was adapted according to continuity.
Simulations R to V applied the windowing method without a periodic base flow exploiting the feature of

the windowing technique that the transformed Navier–Stokes equation (38) can be written in a way that

they do not contain spatial derivatives of non-windowed quantities and therefore do not rely on a periodic

base flow.

Again, the influence of the additional dewindowing step (W1) has been examined. Based on the results

given in Table 3 all subsequent runs do in fact include this step.

5.2.1. Blending without divergence correction: cases A to I

The runs A to I present the results of the fringe and windowing technique with the base flow made peri-

odic using a blending. All components of the base flow U were blended similar to Eq. (5), thus in general

oiUi 6¼ 0.
Table 2

Different fringe and windowing parameters for test case 2 (planar jet)

Fringe method Windowing method

kmax xstart (i) L2 error xl (i) xr (i) L2 error

A 30 20 (80) 0.010 G 10 (40) 22 (88) 7.64 · 10�4

B 30 22.5 (90) 0.017 H 12.5 (50) 19.5 (78) 3.45 · 10�4

C 30 25 (100) 0.031 I 15 (60) 17 (68) 4.51 · 10�4

D 10 20 (80) 0.010

E 1 20 (80) 0.018

F 0.1 20 (80) 0.164

J 30 20 (80) 1.47 · 10�4 O 10 (40) 22 (88) 4.18 · 10�4

K 30 22.5 (90) 1.82 · 10�4 P 12.5 (50) 19.5 (78) 1.12 · 10�4

L 30 25 (100) 2.57 · 10�4 Q 15 (60) 17 (68) 2.27 · 10�4

M 10 20 (80) 3.55 · 10�4

N 1 20 (80) 6.48 · 10�4

R 5 (20) 27 (108) 3.04 · 10�4

S 7.5 (30) 24.5 (98) 9.79 · 10�5

T 10 (40) 22 (88) 8.14 · 10�5

U 12.5 (50) 19.5 (78) 6.04 · 10�5

V 15 (60) 17 (68) 3.66 · 10�5

Fringe parameters according to Eq. (6) with xend = 32 (128); windowing see Eq. (21) with xL = 0 (1) and xR = 32 (128).

Coordinates given in physical units and grid points (in parentheses).



Table 3

Influence of additional dewindowing step (W1)

Option L2 error

Additional dewindowing Periodic Non-periodic

No 1.37 · 10�4 6.30 · 10�5

Yes 1.12 · 10�4 6.04 · 10�5

Results are given for both periodic (case P) and non-periodic base flow (case U).
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The stationary error after t = 100 with variation of the starting point of the fringe forcing is shown in

Fig. 18. Consistent with the test case presented in Section 5.1, increasing xstart results in an overall weaker

forcing towards the desired solution. On the other hand, the immediate upstream influence into the domain

CI can be reduced. However, as Table 2 and Fig. 18 clearly show, the total L2 error does increase with a

shorter fringe region.

Fig. 19 shows the evolution of the maximum streamwise velocity component (y = 4) over the computa-

tional domain. At x = 0 the difference between the prescribed and the computed solution is more than 2%.

For velocity profiles closer to the cross-stream boundary (not shown), a similar behaviour is observed: u is
overestimated within the fringe region leading again to an error of roughly 2%. The streamwise velocity

does not follow the base flow close to and within the fringe region; u increases earlier (upstream influence)

than the prescribed solution, and does not reach the maximum value of the blended base flow. The main

reason for this behaviour and the resulting large L2 errors lies in the base flow which is not satisfying con-

tinuity: The flow in the fringe region is forced towards a non-incompressible solution. Since continuity is

necessarily enforced in the flow solution (via the projection step in the numerical algorithm), errors are

introduced which reduce the accuracy in the whole domain.

Conversely, the windowing technique is not very sensitive in that respect, since the prescribed solution is
enforced in the dewindowing step and the possibly violated continuity equation is not corrected thereafter.

The stationary error for the windowing simulations (cases G to I) is displayed in Fig. 20. The global L2

error decreases with larger window size, although an increased upstream influence can be observed in

Fig. 20. The global L2 error of the windowing approach is, for any set of reasonable parameters, at least

two decades smaller than for the fringe technique.
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5.2.2. Blending of mean flow satisfying continuity: cases J to Q

In contrast to the cases just described, simulations J to Q are performed with a base flow satisfying con-

tinuity. Note that the correction is only needed in the blending region (i.e. where dS(x)/dx 6¼ 0 in Eq. (5)),

the continuity equation is satisfied in the rest of the domain by construction of the base flow (converged

solution).

Analogously to Fig. 18, Fig. 21 compares the error of the fringe method for different starting points of

the forcing. As is to be expected, the global error level is much smaller than for the cases A to I. Addition-

ally, the total error increases with a later start of the forcing, but compared to cases K to M it seems to be

less sensitive. The upstream influence of the fringe forcing also increases with an earlier start of the forcing.
The influence of the fringe strength can be seen in Fig. 22. Stronger forcing causes higher upstream influ-

ence but overall smaller errors.

For the windowing method, the comparison between Figs. 20 and 23 does not show major differences,

neither qualitatively nor quantitatively. The conclusion is that for the windowing technique the knowledge
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of a physically correct solution within the windowing regions is not as important as for the fringe method.

The reason for that is given by the fact that the Navier–Stokes equations are only solved on the windowed

quantities and the boundary condition is added to the windowed solution (see Eq. (32)). Therefore, the

influence of a physically incorrect outflow solution is minimal as long as the conditions in CI
I present a suit-

able and correct inflow.
In Fig. 24(a) drastic difference to Fig. 19 can be stated. With a physical solution in the fringe region, the

fringe method is obviously able to force towards a prescribed state, although a small spatial delay can be

observed. The error of the maximum streamwise velocity at the inflow position has decreased from 2% in

case K to below 10�3 for simulation T. Both the upstream influence and the error at the inflow are reduced

substantially. The error for the windowing technique is basically constant compared to case H (about 10�3).

5.2.3. Non-periodic base flow: cases R to V

Cases R to V are different from all the other cases in that the base flow Ui is not artificially made peri-
odic. As derived in Section 4.2, changes in the numerical algorithm allow directly the use of a non-periodic
0 5 10 15 20 25 30
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 5 10 15 20
0.999

0.9995

1

1.0005

1.001

x x

u 
at

 c
en

te
rl

in
e

u/
U

(a) (b)
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base flow without losing the accuracy and efficiency of Fourier methods. Therefore, no systematic compar-

ison to the fringe method is possible for these test cases as for the fringe technique always a periodic base

flow is required.

Fig. 25 clearly shows the advantage of the non-periodic windowing method. Basically the whole domain

C can be used as a physical solution. Moreover, the L2 error is smaller for most of the window parameters.

It can therefore be concluded that the overall efficiency of this method is superior to that of the fringe tech-

nique and to the periodic windowing method.

Fig. 26 shows the deviation of the computed solution from the mean flow u�U. The error is distributed
evenly around zero. Moreover, it is clearly visible that the windowing method upholds the exact boundary

conditions near the inflow and outflow domain boundaries.
6. Conclusions

The windowing technique presented in this report, adapted from [14] and refined by introducing a

regularised dewindowing procedure, proved successful in solving non-periodic problems governed by the
Navier–Stokes equations while employing periodic Fourier discretisation. Analytical predictions on the

convergence rate of the numerical solution can be made, which are confirmed by our numerical results.

The convergence rate depends fundamentally on the choice of the windowing function. Properly designing

this function allows to recover spectral accuracy [13]. An adaptation of the present algorithm to compress-

ible flows is possible. The exact satisfaction of inflow conditions is ensured due to the dewindowing proce-

dure even for base flows which do not accurately satisfy continuity. For this type of (non-physical) base

flow the fringe method produces inferior results.

The accuracy of the windowing and the fringe method (see [20]) was compared for a number of param-
eters and three test cases. They cover essential requirements encountered in real applications, e.g. spatial

laminar-turbulent transition and turbulence simulations. Both methods were successful in providing an

accurate inflow condition and an artificial outflow condition with limited upstream influence. The global

errors of the windowing method were found to be at least as low as the errors of the fringe technique.

It was found that the performance of the fringe method strongly depends on the choice of the parame-

ters: fringe strength, blending, start and length of the fringe region. While excellent results can be obtained
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for ideal parameters, the imprudent choice of parameters can even lead to numerical problems due to the

fringe forcing. The reduction of the time step in such cases is undesirable as it decreases the efficiency of the

computation significantly. The windowing method, on the other hand, does contains a small number of

tuning parameters and their influence is limited.

Implementing the fringe method into an existing simulation code does not pose any problems. For the
windowing method, additional terms involving derivatives have to be included in the differential equation,

which is more complicated. The cost of the additional calculations for the fringe forcing is negligible, and

that for the evaluation of the windowed quantities and fluxes is small (increase of CPU time due to win-

dowing operations around 5%). For both methods, the fraction of the computational domain needed for

the treatment of the artificial boundary conditions is similar. However, for spatially evolving, non-periodic

base flows the fringe method relies on a blending to provide a periodic base flow. The windowing method,

on the other hand, can be applied directly using a non-periodic base flow and does not necessarily need an

extension of the domain by a blending region.
The influence of the fringe region on the accuracy is difficult to estimate. For the windowing technique,

simple estimates can be used to assess the impact of the boundary treatment on the accuracy. These rela-

tions show that the accuracy can be increased with finer resolution of the window function.

The windowing method provides an attractive alternative way to perform accurate simulations in non-

periodic geometries using periodic discretisation schemes. Since it poses no restriction on the type of inflow

conditions, its use for transitional and turbulent flows is well possible.
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